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SUMMARY 

The SMAC (simplified marker and cell) time-advancing method for solving the unsteady incompressible Navier- 
Stokes equations on non-staggered grids is developed in generalized co-ordinate systems. The primitive variable 
formulation uses Cartesian velocities and pressure, all defined at the centre of the control volume, as the dependent 
variables. A special elliptic flux correction at the faces of the finite volume is utilized in discretizing the continuity 
equation to suppress pressure oscillations. The test flows considered are a polar cavity flow starting from rest and 
the flow around a circular cylinder. The numerical results are compared with experimental results and results 
obtained by the well-known SIMPLEC and PISO methods. The comparisons show that the elliptic flux correction 
technique works well in suppressing pressure oscillations and that the SMAC method is more efficient than the 
SIMPLEC and PISO methods for both steady and unsteady flows. 
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1. INTRODUCTION 

With the rapid increase in computer power available to the researcher, there is an increasing need for 
solving incompressible unsteady flows in complex domains. This need has motivated the intensive 
development of numerical methods for solving the Navier-Stokes equations in curvilinear co-ordinate 
systems. Several alternative curvilinear grid approaches have been reported in the l i t e ra t~re . '~~  Most 
of these methods use staggered grid arrangements whereby the dependent variables are not stored at 
the same locations. A minority use non-staggered grids in which all the dependent variables are stored 
at the same location. The purpose of the present research is to extend the existing methods and develop 
and validate an unsteady viscous incompressible flow solver using primitive variables on a non- 
staggered curvilinear co-ordinate system. The ultimate result of the present work is to develop a 
solution technique that can be used to compute complex 3D incompressible flows; however, this paper 
will be limited to the 2D case. 

As noted above, most schemes reported in the literature use staggered grid arrangements. The reason 
is that the use of a non-staggered grid can result in an undesirable grid-scale oscillation in the pressure 
field. Staggered grids, in which the velocities are stored at locations offset from the pressure, prevent 
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this checkerboard effect by using any change in the pressure field at adjacent grid locations to drive the 
velocity. Despite this disadvantage of non-staggered grids, they do have many advantages when 
compared with the staggered grid, as follows.2 

(i) All variables share the same location; hence there is only one set of control volumes. 
(ii) The convection contribution to the coefficients in the discretized equations is the same for all 

variables. 
(iii) For complex geometries, Cartesian velocity components can be used in conjunction with non- 

orthogonal co-ordinates, yielding simpler equations than when co-ordinate-oriented velocity 
components are employed. 

(iv) There are fewer constraints on the numerical grid, since there is no need to evaluate the so-called 
'curvature terms'. 

Provided that the pressure checkerboard problem can be eliminated, the non-staggered arrangement 
has much to recommend it. One method of eliminating the pressure oscillations is to use higher-order 
dependent variables such as streamfunction and vorticity. However, the order of the equations is then 
increased, with adverse effects on computational efficiency, and the specification of the vorticity 
boundary conditions is not straightforward. Owing to the difficulties associated with using higher- 
order dependent variables and the advantages of using non-staggered grids if the pressure oscillation 
can be eliminated, in the present project a primitive variable scheme defined on a "on-staggered mesh 
with non-orthogonal curvilinear co-ordinates is being developed. 

Over the past 10 years, several non-staggered schemes for primitive variables have been developed. 
Rhie and Chow4 have presented a steady solution method which employs a non-staggered grid in the 
framework of non-orthogonal curvilinear co-ordinates. The scheme utilizes the SIMPLE approach of 
Patankar and S~alding.~ The key idea in Rhie and Chow's method is to use an interpolation for 
calculating the flux through the faces of the control volume using the discretized momentum equations 
for two adjacent control volumes separated by the face in question. The method has been applied to a 
number of steady and effectively eliminates the pressure oscillation. In the method developed 
by Reggio and Camarero,* which is also based on SIMPLE, staggering is introduced in the 
differencing formulae rather than in the grid. Forward differencing is used for the mass flow rate and 
backward differencing for the pressure gradients. 

Both the Rhie-Chow4 and Reggio-Camarero8 methods can be used to solve unsteady 
incompressible flows. However, since both methods are based on the SIMPLE algorithm which was 
initially developed for steady incompressible flows, they may not be ideally suited to unsteady 
calculations. A number of researchers have considered alternative non-iterative strategies for the 
solution of unsteady problems. 

One of the earliest and most widely used methods for solving time-dependent incompressible flows 
is the MAC (marker and cell) method of Harlow and Welch.9 The method solves a Poisson equation for 
the pressure and the momentum equations for the velocities once at each time step and is defined on a 
staggered grid. The method was initially proposed for unsteady flows involving free surfaces and then 
used as a method for solving incompressible unsteady flows. 

An alternative formulation called the simplified marker and cell method (SMAC) was later proposed 
by Amsden and Harlow.'o In the SMAC method at each time step tentative velocities are first obtained 
by solving the momentum equations. These initial velocities, which may not satisfy mass conservation, 
are modified in such a way as to preserve the vorticity but bring the divergence to zero. This is 
accomplished by setting the difference between final and initial velocities equal to the gradlent of a 
potential function. The potential function is then found by solving a Poisson equation for which the 
boundary conditions are strictly homogeneous. Thus SMAC requires fewer boundary conditions and 
eliminates the boundary inhomogeneities of the original Poisson pressure equation, allowing for a 
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more efficient solution. More recently the SMAC method has been utilized by Kim and Benson' for 
solving the unsteady incompressible Navier-Stokes equation in non-orthogonal curvilinear co- 
ordinates using a staggered grid with primitive variables. The SMAC method is compared numerically 
with the SIMPLE and PISO" methods for a few test problems in Kim and Benson's work. It is 
concluded according to their numerical results that for a larger time step SMAC and SIMPLE are more 
strongly convergent and yield more accurate results than the PISO scheme and that SMAC is the most 
efficient computationally. 

For comparison purposes the well-known SIMPLEC" and PISO" methods have also been coded on 
non-staggered grids in the present model. The numerical results of a few test problems obtained by 
these methods will be compared with each other and with experimental results, allowing the accuracy 
and efficiency of the SMAC method to be evaluated. To prevent the grid-scale pressure oscillation 
described above from occurring, an elliptic flux correction method described by M e l d i 3  is used in 
all three methods. Armfield proposed a scheme of the same type as the Rhie-Chow scheme for an 
unsteady problem with a rectangular co-ordinate system but without the relaxation error identified by 
Majumdan6 Armfield m e r  demonstrated that schemes of this type effectively introduce an 
additional discrete term into the continuity equation which leads to the non-staggered scheme having 
an identical discrete ellipticity to the standard staggered SIMPLE scheme. Without the additional term, 
non-staggered schemes are non-elliptic at the grid-scale wave number, resulting in the pressure 
oscillations described above. In a later paper showed that the additional term introduces an 
additional second-order truncation error but that at least for the flow considered the additional error did 
not significantly degrade the accuracy of the scheme. 

The remainder of the paper is as follows. In Section 2 the governing equations in curvilinear form 
are presented. The discretization procedure including elliptic flux correction terms and the SMAC 
method are given in Section 3. The results obtained from the SMAC, SIMPLEC and PISO methods are 
compared with each other and with experimental results in Section 4. Conclusions are given in Section 
5 .  

2. GOVERNING EQUATIONS 

The equations governing laminar, incompressible fluid flow are written in conservation Cartesian 
tensor fonn as 

= 0, ax, 

where uj is the Cartesian velocity component, p is the pressure and Re is the Reynolds number. The 
summation rule for repeated indices is implied in the above equations. 

For the numerical analysis it is more convenient to write the above equations in a general 
dimensionless form as 

where 4 stands for the dimensionless variables (i.e. when 4 = ui, equation (3) corresponds to equation 
(1) or (2) respectively) and r and S6 are the dimensionless forms of the diffusion coefficient and the 
source term respectively. 
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The conservative form of equation (3) in the non-orthogonal curvilinear co-ordinate system ( r ,  1) 
can be obtained by introducing the transformation relations 

5 = 5(.,Y>, 1 = V(X,Y), (4) 

fx = hfi -Y&>lJ, f y  = (-a + x d J J  ( 5 )  

into equation (3) to give 

(6)  

where 

v = vxt - uyg, (8) u = uyq - vxq, 

a = + + $  P = xtx, + YtYq 1 r = + + $ ,  (9) 

with u and v are Cartesian velocity components in x and y respectively. 

then obtained: 
Integrating equation (6) over a finite volume element, the following integral conservation relation is 

where the integration subscripts R and B indicate the area R and the boundary of R respectively. 

3. NLTMERICAL METHODS 

3.1. Grid arrangement and discretization 

The non-orthogonal curvilinear grid on which the 2D unsteady incompressible Navier-Stokes 
equations are solved can be generated either by using the body-fitted co-ordinate technique proposed 
by Thompson et al l5  or by algebraic methods. The type of control volume and the variable 
arrangement used in the present method are shown in Figure 1. All variables and flow properties are 
defined at the geometric centre (P) of the control volume. The four neighbouring control volume 
centres are indicated by N, S, E and W for the north, south, east and west neighbours. The interface 
centres of the control volumes are marked by n, s, e and w respectively. The discretized form of 
equation (10) can be obtained by integrating it over control volume P: 
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Figure 1. Layout of a control volume 

In the present study the temporal variation of equation (1 1) is approximated by a first-order backward 
difference and the diffusion and convection terms are discretized by central differences and the 
QUICK16 scheme respectively. Incorporating these approximations into equation (1 l), a relation 
between 4p and the neighbouring values is obtained: 

In the above equation S p  is the new source term which includes the extra terms dropped from the 
transient term and difision terms in the process of discretization of equation (12); nb stands for the 
neighbouring points of P. 

3.2. Simplified marker and cell method 

based on the flow variables at the previous time level: 
In the SMAC method a tentative velocity field is obtained by solving the momentum equations 

( 1 + A " , ' ) u ; , = ~ A ; - * u ; + S f : + ( ~ " p p ' E - ~ + C U p g - * ) ,  (13) 
nb 

where B", C", By and C" are the discrete pressure coefficients and S; and S;: are the source terms 
from which the pressure gradient terms have been extracted. The superscript asterisk on u and v 
denotes that they are the tentative velocities. The tentative velocities obtained using equations (13) and 
(14) may not satisfy the continuity constraint and must be modified. The tentative velocity field 
(u*, v*) is transformed to the final velocity (u"+', P+') using a vorticity preserving auxiliary potential 
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By substituting equation (15) into equation (1 1) and letting $ = 1 in equation (1 I), a discretized 
equation for + is obtained: 

After $ has been calculated from equation (16), the divergence-free velocity field at time n + 1 is 
evaluated according to equation (15). The corresponding pressure is obtained by subtracting the 
momentum equation at the tentative level from the momentum equation at time n + 1: 

To solve equation (17), it is assumed that the second term (convection term) on the right-hand side is 
negligible, allowing an approximate solution pnf '  to be obtained as 

This approximation has been reported to be reasonable for Re 5 1000 by Braza et at. l7 and Kun and 
Benson.2 

Relations (1 5), (1 6) and (1 8) are only used at interior mesh points. At boundary points the velocity 
boundary conditions are specified directly and the pressure boundary conditions are then obtained 
from the momentum equations on the boundary. 

It is well known if (U'); and (v'): in equation (16) are approximated simply by linear 
interpolation of the neighbouring node values on the non-staggered grid, an oscillatory pressure 
field will result. This has been discussed in Rhie and Chow's work: To solve this problem, Rhie 
and Chow4 used a special interpolation technique called momentum interpolation.6 This method 
works well for steady state problems after m~di f ica t ion .~~~ For some test cases the method4 has 
been observed to show better convergence behaviour than the original SIMPLE method. In 
Armfield's work13 the problem is solved by using a corrected linear interpolation. The correction 
terms are composed of a combination of a compact pressure difference and a sparse pressure 
difference. A theoretical analysis in Reference 13 shows that these correction terms result in a 
strongly elliptic scheme and that good convergence may be expected, as has been observed for 
unsteady natural convection in a square cavity. For simplification, only the case of Uz is discussed 
below. 

As defined in equation (8), U; can be written as 

The velocities u: and v: have been used as the advective velocities in equation (1 l), although it was 
found that this did not produce any significant variation in the solution. The velocities u,' and v,' can be 
expressed as 

u; = Ee + r,", v,' = ve + r;, (20) 
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where the overbar denotes the linear interpolation between nodes P and E. 
The correction terms defined result in the flux through the faces of the control volume being driven 

by a 1At pressure difference rather than a 2A5 pressure difference. This effectively eliminates the 
pressure oscillations which in the traditional non-staggered methods originate from the 2A5 pressure 
gradient discretization. 

The standard SIMPLEC18 and PISO" methods have also been coded on the non-staggered grid 
using the elliptic correction described above. The methods will not be described in detail here. 

3.3. Boundaly and initial conditions. 

The boundary conditions that need to be specified in the present problem include velocity boundary 
conditions, auxiliary potential boundary conditions and pressure boundary conditions. The boundary 
types considered are the inflow boundary, no-slip wall boundary and open (or outflow) boundary. On 
the solid wall and inlet boundaries the velocities are known, a zero normal gradient of $ is prescribed 
and the pressure is obtained by applying the momentum equation in the direction normal to the 
boundary. All the first-order derivatives along boundaries are evaluated using second-order, one-sided 
difference approximations, while the second-order derivatives along boundaries are approximated 
using first-order, one-sided differences to maintain the numerical consistency.'' In this way no 
fictitious points outside the computation domain are needed in the specification of the boundary 
conditions. For the open boundary the specification of the boundary conditions is not as 
straightforward as for the inflow and no-slip wall boundaries. The condition a4/an = 0 is often 
used for open boundaries, where 4 stands for any dependent variable. Unfortunately, this condition 
does not work well for the present model, as described by Gresho." For the present code a zero value 
of $ and the following conditions for velocity and pressure on the open boundary have been found to 
work well: 

where 4 is any of the velocity components and Ti is a representative value of the normal velocity at the 
exit. 

An initial divergence-free velocity field is generated by using the method suggested by Gresho," 
which will not be reported here. The initial pressure field is obtained by solving a Poisson equation 
which is derived from the initial momentum equations," 

- a'po = - a (-.. oaup -), 
axidxi axi J ax, (24) 
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with boundary conditions specified as 

on the known velocity boundaries and 
0 1 aug 
-Rean 

on the open boundary where n and z are the directions perpendicular and parallel to the boundary. It 
has been observed that an improperly described initial pressure condition will cause temporal 
oscillations in the velocity field for the unsteady flow. 

4. NUMERICAL RESULTS 

Numerical results for a polar cavity flow starting from rest and the flow around a circular cylinder at 
Re = 40, 100 and 3000 are presented to validate the procedure proposed in this paper. All the 
discretized equations were solved by the Gauss-Seidel SOR method. 

To facilitate comparisons of the numerical results obtained using different methods, some 
convergence criteria have been defined. Since the discretized equations are solved iteratively using the 
SOR method, one set of convergence criteria needs to be prescribed for the SOR iteration: 

where I = u, v or $, Rk is the absolute residual of the discrete equation averaged by the number of grid 
points, evaluated at the kth iteration of the SOR, and 6;  is the convergence criterion for the Zth flow 
variable. For the SIMPLEC method another set of convergence criteria is needed for the iterative 
solution of the flow equations. The error norm used for the SIMPLEC method is described as 

I e l:=I R: I <  4 ,  (27) 

i , j  

where I Divij I is the absolute divergence of the (i,j)th control volume and Neon is the total number of 
control volumes. A maximum iteration number is also set to economize the calculations. The 
convergence criteria used are 1 e / I =  (1 x lo-', 1 x lo-', 1 x and I e 1 2 =  (1 x lo-'}. The 
maximum numbers of SOR iterations for the SMAC and PIS0 methods are 11, 1 1 and 100 for the 
discrete u-, v- and p-equation respectively, while those for SIMPLEC are 5,5 and 11 respectively. The 
maximum iteration number for the velocity-pressure coupling at each time step in SIMPLEC is 1 1. 

For steady state flows another convergence criterion is needed to determine when a stationary 
solution is achieved: 

where A;,, is the lth velocity component at the kth iteration of the solution of the coupled momentum 
equations and continuity equation, At is the time step and e3 = 2 x is used in the present 
research. 

4. I. Polar cavity flow starting j -om rest 

The lid-dnven polar cavity flow has been used as a test problem for numerical algorithms in several 
studies.'~~. The geometrical parameters of the flow are shown schematically in Figure 2, the flow is 
calculated at Re = 350, based on the lid velocity and the depth of the cavity It is experimentally 
known that a steady state exists for the polar cavity flow at this Reynolds number.20 The flow domain is 
discretized by an 81 x81 grid which is idential with the grid used in Reference 1. 
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Figure 2. Geomeby of polar cavity flow 

The flow is simulated using the SMAC, SIMPLEC and PISO methods. The numerical solution of 
the flow starts with zero velocity field and is advanced in time until a steady state is reached. Time 
steps At = 0.05,0.025 and 0.01, were first tried for all the methods. It was found that PISO did not 
converge for At = 0.05, while SMAC and SIMPLEC are stable for At = 0.05. 

The calculated steady-state radial and circumferential velocity components along the three radial 
lines 8 = -20°, 0" and 20" are compared with the experimental results of Fuchs and Tillmark2' in 
Figures 3(a)-3(c). The numerical results obtained using all three methods with different time steps give 
near identical results in all cases and are in good agreement with the experimental results.20 

Table I gives the computational effort required by the three methods to achieve steady state, where 
'Time' is the non-dimensional time, 'Iterations' is the total number of time steps required and 'CPU' is 
the machine's CPU time in seconds. If the CPU time taken by the SMAC method is fixed as 1, then the 
CPU time is 1.7 for SIMPLEC and 1.89 for PISO for At = 0-05. Figure 4 shows the time evolution of 
the average divergence I e l2 and Figure 5 shows the maximum difference of the velocity components 
I e l 3  between two adjacent time levels. The evolution of the divergence reflects the accuracy of the 
numerical method and the evolution of the difference of the velocity components shows the 
convergence behaviour of the numerical method for a steady flow. From Figures 4 and 5 it is observed 
that the SIMPLEC method produces a smaller error in the continuity equation than the other methods 
at At = 0.05. All three methods display almost equal convergence speed. However, since the SMAC 
method needs less computational time than SIMPLEC and PISO for each time step, it is the most 
efficient. 

4.2. Larninarflow over a circular cylinder 

The flow over a circular cylinder has also been widely used as a test problem for numerical 
algorithms. '~~~'~ It is known experimentally that the flow is steady at Re I 40,21122 based on the 

Table I. Computational effort for polar cavity flow at Re = 350 

Method SMAC SIMPLEC PIS0 
At 

0.05 0.01 0.05 0.01 0.025 

Time 27.60 26.37 29.10 20.00 26425 

Iterations 552 2637 582 2000 1073 

CPU 151 14 24 154 25949 286 15 40386 
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Figure 3. Velocity profiles of polar cavity flow with Re = 350 at (a) 0 = -20", (b) 0" and (c) 20" 
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Figure 4. Evolution of the error norm 1 e Iz 

diameter of the cylinder and the freestream velocity, and the flow is inherently unsteady when Re > 40. 
In order to validate the transient behaviour of the SMAC method, flows at Re = 40,100 and 3000 have 
been simulated in the present study. 

The flow around a circular cylinder is not confined in the physical domain; nevertheless, a finite 
external boundary is needed in order to obtain a numerical simulation. In the present study a 40r x 60r 
rectangular region around the cylinder is taken as the computational domain, with the circular cylinder 
centre placed at (20r,20r) and the left comer of the rectangular box as the origin, where r is the radius 
of the cylinder. The domain is then discretized into a 100 x 70 grid with grid points clustered near the 
cylinder. The smallest grid size is 0.1 5r x 0 . 1 5  and the largest 0.87r x 1 . l  r, giving a total of 7000 
nodes. All the calculations are performed on this grid unless stated otherwise. 

Experimental results on the time evolution of the separation length L (measured from the rear of the 
cylinder and normalized by the diameter) at Re = 40 are available2'122 and are compared with the 

SMAC(Dt=O.O5) 
SMAC(M=O.Ol) + SIMPLEC(Dt=0.05) 

0 PISO(Dt=0.025) 

1 ime 

Figure 5.  Evolution of the error norm I e l3 
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Table 11. Computational effort for flow around circular cylinder at Re = 40 

Method SMAC SIMPLEC PISO 

At 0.05 0.025 0.05 0.025 0.05 0.025 
~ ~ ~~ ~ 

Time 52.05 52.93 50.50 46.0 49.90 50.68 

Iterations 1041 2117 1010 1840 998 2027 

CPU 47986 72005 72725 116984 78450 125186 

CPUhteration 46.10 34.01 72.00 63.09 78.61 61.76 

numerical results for the purpose of validating the transient behaviour of the SMAC, SIMPLEC and 
PISO schemes. 

The calculations of the flow over a circular cylinder at Re = 40 were initially attempted with a time 
step At = 0.1 for all three methods; however, none was convergent. The time step was then reduced to 
At = 0-05 and 0.025, for which all three methods were convergent. The calculations were marched in 
time till a steady state was reached. Figure 6 presents a comparison of the numerical results and the 
experimental results of Coutanceau and Bouard” for the time evolution of the separation length behind 
the cylinder. The numerical results obtained using all three methods are equivalent and in good 
agreement with the experimental results. The steady state separation lengths predicted by the different 
methods are exactly the same. However, it is noted that a slight oscillation occurs in the later part of the 
transient solution for all the methods at At = 0.05. These are reduced considerably in the solutions at 
At = 0.025. Figure 7 shows the pressure distribution along the cylinder surface compared with the 
experimental results of Grove et The pressure coefficient C, shown in the figure is defined as 
Cp = d p  - po + 4 p U i ) /  ipU:’, where po is the pressure at the front stagnation point of the cylinder 
and 9 is zero at the front stagnation point. The pressure predicted by the SMAC method agrees very 
well with the experimental results as well as with the numerical results obtained by SIMPLEC and 
PISO. The fact that there are no pressure oscillations on the present non-staggered grid indicates that 
the elliptic correction technique used is effective. The flow pattern behind the cylinder is shown in 
Figure 8 using SMAC with At = 0.05 when the computation has reached steady state. The 
symmetrical vortex pair behind the cylinder is clearly seen and the flow pattern is exactly the same as 
the experimental results given in Coutanceau and Bouard’s work.” 

Table I1 gives the computational effort required by the different methods to obtain steady state. It is 
seen again that the SMAC method is the most efficient. The ratio of the CPU time spent by SMAC, 
SIMPLEC and PISO for this problem is about 1 : 1.5 : 1 . 6  respectively. 

The flow over a circular cylinder at Re = 100 is unsteady and always accompanied by vortex 
shedding in the wake region. In order to generate the vortex shedding numerically at this Reynolds 
number, an artificial asymmetrical perturbation is introduced. The details of the artificial perturbation 
are discussed in Reference 17. The computational grid used is exactly the same as the one for Re = 40, 
with a time step At = 0.05 used for all three methods. The time evolution of the lift coefficients 
predicted using SMAC, SIMPLEC and PISO is shown in Figure 9. The lift coefficient is defined as 
C, = lift/(0.5pUiD), where UO is the freestream velocity and D is the diameter of the cylinder. The 
periodic properties of the flow resulting from the vortex shedding are clearly seen in this figure. The 
calculated Strouhal numbers St obtained from Figure 9 are compared with the numerical results of Kim 
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Figure 6 .  Time evolution of separation length behind circular cylinder at Re = 40 
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Figure 7. Pressure distribution along cylinder surface at Re = 40 

12.0 

11.5 

11.0 

10.5 

10.0 

9.5 

9 . 0  

8.5 

Figure 8. Velocity field behind circular cylinder at Re = 40 
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Table 111. Sf-values (Sf = 2fr/u,) for flow around circular cylinder, at Re= 100 

Method SMAC SIM- PIS0 E~perirnent'~ 
PLEC 

Kim and At 0-05 0.05 0-05 0.160 
Benson2 st 0.155 0.158 0.164 

Present At 0.05 0.05 0.05 
st 0.158 0.159 0.158 

and Benson' and the experimental result summarized by Braza et al. l7 in Table 111; good agreement is 
observed. The CPU times in seconds spent by SMAC, SIMPLEC and PIS0 when the calculation is 
advanced to dimensionless time T = 100 are 113,676, 159,030 and 201,123 respectively. The ratio of 
cpu time is 1:1.4:1.77 respectively and SMAC is again the most efficient of the methods. This 
conclusion is consistent with the results by Kim and Benson.' 

The velocity vectors in roughly a single shedding period obtained using SMAC with At = 0.05 are 
shown in Figures lO(aFlO(g). A small vortex with negative rotation attached to the upper cylinder 
grows and separates from the wall, while at the same time another vortex with the opposite rotation 
starts to grow on the lower side of the cylinder. As the negative rotation vortex is swept away by the 
freestream, the positive vortex continues to grow and itself separates and a new negative vortex begins 
to form on the upper part of the cylinder, completing one shedding cycle. 

In order to validate the applicability of the SMAC method for flows with higher Reynolds numbers, 
the initial development of an impulsively started flow over a circular cylinder at Re = 3000 is 
simulated. The initial development of the flow at this Reynolds number has been studied 
experimentally by Bouard and Co~tanceau~~  as an example to validate a numerical scheme for the 
study of oscillating flow around a circular cylinder. 

This flow was calculated using an 80r x 80r square computational domain with the circular cylinder 
centred at (40r, 40r). The larger computational domain was chosen for this higher Reynolds number to 
ensure that boundary effects were negligible. The domain was discretized using a 175 x 126 non- 
rectangular mesh with grid points clustered near the cylinder surface and the downstream side. The 

Figure 9. Evolution of lift coefficient for flow over a circular cylinder at Re = 100 



SMAC METHOD FOR UNSTEADY FLOWS 29 

cylinder surface is divided by 64 equally space grid points and the minimum grid size is approximately 
0. lr x 0. lr, with At = 0.01. Figure 1 1 shows a comparison of the calculated separated flow behind 
the cylinder at dimensionless time c = 2.5  with the flow visualization result of Bouard and 
Co~tanceau ;~~  the agreement between the two results is excellent. Figure 12 shows the time evolution 
of the recirculation region length compared with the results from other studies; good agreement is 
again observed. 

5 .  CONCLUSIONS 
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Figure 10. Velocity vectors for a vortex-shedding cycle at Re = 100 at various times shown in the figures 
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Figure 11. Recirculation zone for an impulsively started flow around a circular cylinder at Re = 3000 and t = 5: (a) present 
calculation visualized by streamfimction contours; (b) flow visualization result by Bouard and Coutan~eau~~ 
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Figure 12. Time evolution of recirculation zone for an impulsively started flow around a circular cylinder at Re = 3000 
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A simplified marker and cell (SMAC) method for solving the unsteady incompressible Navier-Stokes 
equations on a non-staggered grid is presented in generalized curvilinear co-ordinates. Suppression of 
the pressure oscillations induced by the non-staggered grid arrangement is achieved by introducing an 
elliptic correction to the flux through the control volume faces in the continuity equation. Polar cavity 
flow and flows over a circular cylinder at Reynolds numbers of 40, 100 and 3000 are calculated and 
compared with both the numeral and experimental results. The following conclusions have been 
reached. 

(1) The numerical results show that the elliptic correction works very well in suppressing the pressure 
oscillations on the non-staggered grid. 

(2) The calculations of the polar cavity flow and the flow over a circular cylinder at Re = 40 show that 
the SMAC method is more efficient than the SIMPLEC and PISO methods for steady flows. 

(3) The SMAC method is much more efficient than the SIMPLEC and PISO methods for unsteady 
flow, because although the same time step can be used for all three methods, the SMAC method 
needs less computational time than SIMPLEC and PISO for each time step. 
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